
QSI Corporation www.qsicorp.com 801-466-8770

Application Note
Qlarity® USB Serial Communications

for Windows®

Revision 1 Page 1

Introduction
The QTERM-G58 and QTERM-G56 are USB
composite devices, containing two USB func-
tions: a mass storage device and a serial commu-
nications device. The mass storage function uses
standard USB device drivers and should automati-
cally mount and appear as a Removable Disk in
the Windows Explorer, where files can be read
and written normally. The serial communications
function requires the installation of a custom QSI
USB communications driver, which allow USB
communication between the G58/G56 terminal
and a Windows PC. This includes firmware and
application download using Qlarity Foundry®,
and communications between your custom appli-
cation running on a Windows PC and the Qlar-
ity application running on the terminal. The se-
rial communications function supports multiple
logical connections (called “destinations”). Each
destination has its own handle and is treated as a
separate serial connection. It is much like having
several serial ports available on the G58/G56.

When the G58/G56 USB cable is first plugged into
a PC, the PC USB host only sees the mass storage
function. This allows the mass storage function to
be used on any PC, without nagging the user for
QSI drivers. However, if you want to use the USB
serial communications function then you must
load the QSI drivers.

To install the drivers, merely launch the QSI USB
Driver install executable and follow the dialog
prompts. Actually two drivers are installed: a fil-
ter driver (USBQSICTRL) and the serial function
driver (USBQSICOM). The filter driver allows
applications that are aware of the QSI USB com-
munications function (such as Foundry) to enable/

disable the communications function. The mass
storage function is available in either case, but the
G58/G56 must re-enumerate when the communi-
cations function is enabled or disabled.

USB Communications with Qlarity
Foundry
After the drivers are installed, a new tab (labeled
USB) will appear in the Qlarity Foundry down-
load dialog. A list of connected QTERM-G58/G56
terminals appears below the tab (disconnected ter-
minals are grayed out). The desired device may
be selected from the list, then an application or
firmware image may be downloaded. Make sure
that the terminal is in the Application Loader be-
fore you attempt a download. (NOTE: In Qlarity
Foundry 2.60, the results window is for standard
serial communications only, and will not show any
feedback from the terminal during USB down-
loads Also, Qlarity Foundry 2.60 does not support
USB communications in Simulation Mode).

USB Communications with a Qlarity
application
From a Qlarity perspective, USB communications
are very similar to the existing (UART-based) se-
rial and network communications. A USB com-
munications channel is obtained by calling US-
BGetCommChannel() and released by calling
USBCloseCommChannel (see documentation be-
low). Once a communication channel is obtained,
the application is informed that the USB host has
connected to the associated destination via the
MSG_USBD_CONNECTION message. Subse-
quent disconnections by the host are also passed
to the application with this message.

QSI Corporation www.qsicorp.com 801-466-8770Revision 1 Page 2

Data is received from the USB host via MSG_
COMM_RECEIVE messages and data is transmit-
ted to the host with calls to the Transmit() or Send()
API functions. Remember to register the object to
receive data (with a MSG_COMM_RECEIVE
handler) by calling RegisterMsgHandler().

QlarityUSBComm Library
QSI provides a C++ library that contains functions
to access the USB serial communications with
your Windows application. The library is called
QlarityUSBComm.lib and comes with the header
file QlarityUSBComm.h. There are several builds
of the library; the one to use will depend on your
development environment (i.e. Microsoft Visual
Studio 2003 vs. 2005 and different runtime librar-
ies used). Please contact QSI Support to obtain
the correct version for your development environ-
ment. Sample code that demonstrates use of the
library is also available. Some guidelines on using
the library are included below.

First, you should ensure that the QSIUSBCom
drivers are installed with this function:

bool IsDriverInstalled();

After confirming that the drivers are installed you
need to get a list of connected QSI USB Commu-
nication devices. This also gives you the internal-
Name of the device which you will use in other
function calls to select a particular device.

bool GetDevicesNames(std::vector<DeviceInfo>
&names, bool autoMakeReady, bool block);

parameters:

names 		 (OUT) This vector will
receive information about any QSI devices
that are attached via USB. Any data in
this vector when this function is called
will be erased and replaced with the cur-
rent information

autoMakeReady	 Indicates whether we
should try to make any unread devices
ready. When GetDeviceNames is search-
ing for connected devices, if it detects
a device which is attached but the serial
communication mode is not enabled, then
if this parameter is set to true it will
enable serial communication on that de-
vice.

block		 If set to true then func-
tion will not return until the device is
ready. This is only used if autoMakeReady
is set to true

To get a list of destinations that are open on a de-
vice call the following function:

bool GetDestinations(const Qlar-
ityUSBWideString &internalName,
std::vector<DestInfo> &names);

parameters:

internalName	 The internal name for the
device that was returned from the GetDe-
viceNames function.

names		 A list of destination
numbers and destination names that are

available on the device.

Once you have the internal name and destination
for the channel you want to use, get a handle for
the destination by calling the OpenFileHandle()
function. This handle can then be used with stan-
dard file I/O APIs: WriteFile() to transmit data and
ReadFile() to receive data. Be sure to call Close-
Handle() when you are finished communicating
with the device.

HANDLE OpenFileHandle(const QlarityUSB-
WideString &internalName, USHORT dest, DWORD
&maxPacketSize);

parameters:

internalName	 The internal name for the
device that was returned from the GetDe-
viceNames function.

dest			 The destination
that you want to use as your serial con-

QSI Corporation www.qsicorp.com 801-466-8770Revision 1 Page 3

nection. A list of available destina-
tions is determined by calling the Get-
Destinations function.

maxPacketSize	 (Out). Receives the max-
imum size, in bytes, for single read or
write transfers.

Here is an example of opening a destination on a
USB Comm device and receiving some data. For
the sake of simplicity all error checking has been
removed.

UCHAR buffer[50];

std::vector <DeviceInfo> DeviceNames;

std::vector <DestInfo> Destinations;

DWORD returnSize;

HANDLE handle;

QlarityUSB::IsDriverInstalled();

QlarityUSB::GetDeviceNames(DeviceNames,

true, false);

if (DeviceNames.size() > 0) {

QlarityUSB::GetDestinations(DeviceName
s[0].internalName, Destinations);

handle = QlarityUSB::OpenFileHandle(Devic
eNames[0].internalName, Destinations[0].
destNum, 8192);

ReadFile(handle, buffer, 50, returnSize,
NULL);

CloseHandle(handle);

}

Some additional functions are defined. Rena-
meDevice() is used to assign a friendly name to
a device. GetLastErrors() can be used to display
what the last error was. IsDeviceValidAndReady()
is used to verify that the device is ready to open a
file handle. GetDriverVersions() can be used to
display the versions of the QSI USB Comm driv-
ers. These should be self explanatory from com-
ments in the header file.

